
T)SCII,LATIONS OF ELASTIC BODIES WITH FINITE 
CONDUCTIVITY IN A TRANSVERSE MAGNETIC 

FIELD 

(KOLEBANIIA UPRIJCIKH TEL KONECHNOI PROVODIMOSTI 

V POPERECHNOM MACNITOM POLE) 

PnlW Vo1.27, No.4, 1963, pp. 740-744 

Ia. S. UFL I AND 
(Leningrad) 

(Recieved April 3, 1963) 

The investigation of the phenomena of magnetoelasticity. i.e. the 

oscillations of an elastic body which occur under the action of body 

forces, of not only mechanical but also electrical origin (the latter 

arises in case where the motion of the electrical conducting medium 

takes place in a magnetic field) is the subject of a series of articles 

by Kaliski [l-d which consider a perfect conductor, dielectrics, and 

some other limiting cases as well. A paper by Dolbin [71 is devoted to 

the propagation of plane waves in a perfect conductor. 

Below, some magnetoelastic processes are studied, originating in sub- 

stances with finite conductivity. With the help of integral transforms, 

an exact solution is given for the two-dimensional magnetic oscillations 

problem of an infinite body in a transverse magnetic field under the 

action of arbitrary body forces. 

The system of the 

dynamic equations of 

forces 

original differential equations consists of the 

the theory of elasticity containing ponderomotive 

CAu + (h f G) grad div u -1_ F + b j x H = p $ (1) 

and electrodynamic equations for a moving medium (the displacement 

current is disregarded) 

c 
x II 1 zroth, rot E ~; - IL a_h 

c dt ' 
div h = 0 (9 
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In formulas (1) and (2), the following symbols are intrcduced: u is 

the vector displacement, F is the body force, H is the applied (homo- 

geneous) magnetic field, h is the induced magnetic field (h << II), E is 

the electric field, i is the current density, p is the density, A and G 

are Lame coefficients, u is the conductivity, i.~ is the permeability and 

c is the velocity of light. 

Below, the two-dimensional problem (where uz E 0. a/& E 0). is con- 

sidered, in which it is assumed that the oscillations originate in a 

transverse magnetic field, so that A = Hk. For these conditions 

j x H = (c 14~~) [rot h x H] = - (cH / 4n) grad h, 

and the equations of motion assume the form 

GAu+(h+C)graddivufF-I+gradh,=p$ 

If we introduce the scalar potential 9 and the vector potential 

A = yk, by the well-known formula 

u=gradcp+rotA 

and also represent the body force in the form 

F=grad@+rotYk 

then we obtain separate equations 

(3) 

(4) 

(5) 

(6) 

from which it is obvious that the electro-magnetic effects in the given 

case are observed only for dilatation waves and are not affected by 

shear waves. 

In order to eliminate the magnetic field hZ, the divergence of equa- 

tion (3) is taken, and we obtain the equation 

C div AU + (h + C)n div u + div F ---r$ Ah,= p div 2 

Further, taking the curl of the first equation of (2). and taking 

into account the second equation, we find 

Ah = 
4nap a 
Tx(h+ H divu) 

(7) 

(8) 

Determining the magnitude Ah from this equation, substitut.ing into 

(7), integrating over time and issuming the initial conditions to be 
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zero, we arrive at the following expression for the projection* of the 

field h : L 

h, = A 
0 0 

(9) 

Finally, the substitution of this expression into the first equation 

of (6) allows us to obtain the following equation for the potential ‘p: 

To obtain the solution of the latter equation, which approaches zero 

at infinity, together with the first three derivatives, we apply 

successively to equation (10) the Laplace transform and the second 

Fourier integral transform, setting 

f” (a, p, p) = \ \ \ f (I, y, t) e-Pf+i(ax+Pu)dt dx dy 
0 -co--Q3 

Taking into account the zero initial conditions, as well as the re- 

quirements at infinity, we obtain the equation for the transformation 

of the quantity q” 

- (1L + 2G + x) (aa + P) cp” - v [PP (a* + P”) To + ‘* (a* + ps)z@] + 

whence 

[P + v (a2 + P2)1 @” 
To = pps + p (a2 + p2) (h + 2G + x) + v (a2 -I- P2) IP$ -I- (h -I- 2G) (oa A- P2)1 (12) 

Thus, the general solution of the posed problem for the potential 9 

is given by the inversion formula 

T(x,yIt)=&\eptdp 5 ~~“(a,P,~)e-i(nriPvidad~ (13) 
L -co--o0 

* The projections of (8) on the x- and y-axes lead to homogeneous 
equations for the magnitudes h, and hy. From the requirement of the 
equation that they be zero at infinity, it follows that the quanti- 
ties h, = hy = 0. 
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where I. is the infinite line drawn in the complex plane p parallel to 

the imaginary axis farther to the right than any of the singular points 

of the function 9’. 

For further transforms of the obtained solution, we will assume that 

the body force is an impulse of magnitude (2, concentrated at an arbi- 

trary point of the plane xOy, such that. without loss of generality. it 
may be assumed that it is situated at the origin of coordinates and 
directed along the y-axis. Note that the solution for the case of arbi- 

trary body forces may be obtained from the given path of integration 

over the region of application of the loads and over time with a sub- 

sequent application of Duhamel’s integral. Since the potentials ‘I) and ‘?, 
corresponding to the body force with the components Fx = 0. F = Fy(x, 

Y, t). are given by the formulas (see, for example. [e, p. 194j) 

it follows that for the case of the force F = F(t)j, concentrated at 

the origin of coordinates, we have 

YF (t) 
@ = 2n (x2 + y2) ’ 

XF (t) 
y = - 2n (9 + $) 

Applying to these expressions the Lapface and Fourier transforms, we 

find for the case of the impulse (1 the following transformed expressions: 

Introducing the polar coordinates x = I- cos 0, y = r sin 8, 

a = R cos 6, p = R sin 6: the solution of (13) may be represented in 

the form 

where 

With the aid of the well-known integral form of the Bessel function, 

and integrating over the variable 6, we obtain 
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co 

cp = -& eP’dp 
s s 

p + ma 

x (R, P) 
J1 (Rr) dR 

L 0 

Since the denominator x is a polynomial of the fourth degree relative 

to the variable R, resolving it into its factors and applying the 

formula (See [9. ~1.6921) 

cm 

s xaJl (ax) dx 

x= f ba 
= bK1 (ab) 

0 

where KI(z) is a Macdonald function, we obtain the solution of the prob- 

lem in the form of the following complex integral for the Potential 9 

of the dilatation waves 

(20) 
QY~ ; QY 

p = 2npra - [R, (P - 4nzipr s 
vR,‘d) K1 (RA --Ra (P - vR3 Kl (R,r)l RafLRila ept ‘$ 

L 

R,,: = P 
T T VT” - .~VPP (a + 2G) 

2v(k + 2G) ’ r = A+ 2G + x + VPP w 

After determining 9, the value of the induced magnetic field h, G h 

is easily obtained on the basis of the first formula in (6) 

(22) 

Consideration of the asymptotic expressions of the quantities 

shows that for v f 0, the potential q (as well as the field h) Consists 

of two relatively different components: one of these is a wave propagat- 

ing with a velocity (I, while at the same time the other, in general. 

does not possess the characteristics of a wave. 

The case where v = 0 corresponding to a perfect conductor, turns out 

to be singular, since the original equation (10) changes its type. For 

this 

Rl--,W 
P 

R,-+- a* = 
v- 

h+2G+x 

a* ’ P 

and the transformation of equation (20) gives 

QY~ 
q = 2npP 

--_-SKI (p$) ep’$ 
4n2ipra* 

L 

(23) 

If formula [IO, Vol.1. p.1401 is applied 
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(24) 

then, finally, we find 

The last expression gives the very same law for the potential 9 as 

the ordinary dynamic theory of elasticity (see, for example, [ll, Chapt. 

121 ), where the velocity of propagation has the value [71 

I/P-~ (h+ 2G + i~H2 I n) 

In this limiting case the magnetic field h is related to the poten- 

tial 9 by the relationship 

h = - IIncp (26) 

From the general formula (20) we may obtain the solution of the prob- 

lem for a homogeneous case, when impulses with a density q are equally 

distributed along the axis Ox. Carrying out in equation (20) the inte- 

gration over the variable II from - ~0 to + m and applying formula [9,~.71 
03 

5 K, (a 622 & ,Y, = 2+~ e -QlYl 
’ ‘>’ 

0 

we obtain 

. Pt 

cp = $ + &-\ [~~a (p - vR$ e-Rz’u’- Ra2 (p - vR12) e-R1’Y’ I (Ran e_~la) p” (28) 
i 

The general expressions (20) or (28) may be reduced to the real form 

if we consider the singular point of the integrands to be a branch Point 

P = 0, and carry out integration along the edge of the cut Parallel to 

the negative part of the real axis p. 

For obtaining the asymptotic representation of the unknown function 

for t - 0 and t - a, we may apply the well-known method of operational 

calculus. Thus formula (28) gives the asymptotic expression 

QVX IyI I/k + 2G + x 
7% 2 (h + 2G + %)a 2 I/(h + 2G) vt 

where q(z) is the probability function. 

Simple approximate formulas for the functions 9 and h may also be 
-1 

obtained by expanding with respect to small parameters K, II and v . 

(29) 
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Passing to the limit K -+ 0, corresponding to the absence of a mag- 

netic field, give RI = p/u, R2 =\l(p/v), which, after using formula (24) 

leads to the expression (25) with the substitution of velocity a* by 

a = I/p-l (h + 2G) 

It may be shown that the identical result 

passing to the limit v - 0, when the elastic 

nonconductor. 

may also be obtained after 

body is substituted by a 

In conclusion, we give the general expression for the potential of 

shear waves y which, based on equations (6) and (16) are expressed by 
the formulas 

Integrating over x from - m to + m we may obtain from this the corre- 

sponding expression for the one-dimensional case. 
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